Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum)

نویسندگان

  • Quanwei Lu
  • Yuzhen Shi
  • Xianghui Xiao
  • Pengtao Li
  • Juwu Gong
  • Wankui Gong
  • Aiying Liu
  • Haihong Shang
  • Junwen Li
  • Qun Ge
  • Weiwu Song
  • Shaoqi Li
  • Zhen Zhang
  • Md Harun Or Rashid
  • Renhai Peng
  • Youlu Yuan
  • Jinling Huang
چکیده

As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton (Gossypium hirsutum) crossed with high-quality Sea Island cotton (G. barbadense). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase (MNS1)], XLOC_029945 (FLA8), and XLOC_075372 (snakin-1), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and phenotypic effects of chromosome segments introgressed from Gossypium barbadense into Gossypium hirsutum

MBI9915 is an introgression cotton line with excellent fiber quality. It was obtained by advanced backcrossing and continuous inbreeding from an interspecific cross between the upland cotton (Gossypium hirsutum) cultivar CCRI36 as the recurrent parent and the sea island cotton (G. barbadense) cultivar Hai1, as the donor parent. To study the genetic effects of the introgressed chromosome segment...

متن کامل

Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects

Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland co...

متن کامل

The Post-Genomic Era for Cotton

Background and Rationale The scientific infrastructure in support of cotton research and improvement took a ‘giant leap forward’ with the release of the first ‘gold-standard’ cotton reference genome sequence on 5 January 2012. Later in 2012, two independent publications (Paterson et al. 2012; Wang et al. 2012) provided initial descriptions of the basic genome of cotton, with one of these also r...

متن کامل

Characterization and Expression Analysis of a Fiber Differentially Expressed Fasciclin-like Arabinogalactan Protein Gene in Sea Island Cotton Fibers

Fasciclin-like arabinogalactan (FLA) protein is a cell-wall-associated protein playing crucial roles in regulating plant growth and development, and it was characterized in different plants including Upland cotton (Gossypium hirsutum L.). In cDNA-AFLP analysis of 25 DPA (days post anthesis) fiber mRNA, two FLA gene-related transcripts exhibit differential expression between Sea Island cotton (G...

متن کامل

Estimation of genetic parameters for quantitative and qualitative traits in cotton cultivars (Gossypium hirsutum L. & Gossypium barbadense L.) and new scaling test of additive– dominance model

A complete diallel cross of nine cotton genotypes (Gossypium hirsutum L. & Gossypium barbadense L.) viz Delinter, Sindose-80, Omoumi, Bulgare-539, Termez-14, Red leaf (Native species), B-557, Brown fiber and Siokra-324 having diverse genetic origins was conducted over two years to determine the potential for the improvement of yield, its components, oil and fiber qual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017